Package: SCOPRO (via r-universe)

September 9, 2024

Title Score Projection Between in 'Vivo' and in 'Vitro' Datasets Version 0.1.0 Author Gabriele Lubatti Maintainer Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de> **Description** Assigns a score projection from 0 to 1 between a given in 'vivo' stage and each single cluster from an in 'vitro' dataset. The score is assigned based on the the fraction of specific markers of the in 'vivo' stage that are conserved in the in 'vitro' clusters https://github.com/ScialdoneLab. License GPL-3 **Depends** R (>= 4.0) Imports ggplot2 Suggests CIARA, rmarkdown, testthat (>= 3.0.0), knitr VignetteBuilder knitr biocViews software BugReports https://github.com/ScialdoneLab/SCOPRO/issues **Encoding UTF-8** RoxygenNote 7.1.1 Config/testthat/edition 3 NeedsCompilation no **Date/Publication** 2022-08-23 08:10:05 UTC **Repository** https://gabrielelubatti.r-universe.dev RemoteUrl https://github.com/cran/SCOPRO RemoteRef HEAD

RemoteSha d1962de08f21b1a2b69e0eb3cdd77a35f4156abe

Type Package

2 filter_in_vitro

Contents

filte	er_in_vitro	filter_	in_vi	tro													
Index																	10
	select_top_marker	s				 •	 •	•	 •	٠	 ٠	•	 •	٠	•	 •	9
	select_no_commo	_															
	select_common_ge	enes															7
	SCOPRO																
	plot_score_genes																
	plot_score																
	filter_in_vitro																2

Description

For a given gene in in *marker_all*, if the fraction of cells in one or more clusters with an expression above *threshold* is greater than *fraction*, then the gene is kept

Usage

```
filter_in_vitro(
  norm_vitro,
  cluster_vitro,
  marker_all,
  fraction = 0.1,
  threshold = 0
)
```

Arguments

norm_vitro Norm count matrix (n_genes X n_cells) for in vitro dataset

cluster_vitro cluster for in vitro dataset

marker_all First element of the list given as output by the function select_top_markers

fraction Numeric value.

threshold Numeric value

Value

Character vector with the names of kept genes

Author(s)

plot_score 3

plot_score

plot_score

Description

```
plot_score
```

Usage

```
plot_score(
   SCOPRO_output,
   marker_stages,
   marker_stages_filter,
   selected_stages,
   name_vivo,
   y_name,
   fill_name,
   title_name
)
```

Arguments

```
output given by function SCOPRO
SCOPRO_output
                 Second element of the list given as output by the function select_top_markers
marker_stages
marker_stages_filter
                  output from the function filter_in_vitro
selected_stages
                 In vivo stages for which the markers where computed with the function se-
                 lect_top_markers
name_vivo
                 name of the in vivo stage on which SCOPRO is run
                 Character value
y_name
fill_name
                  Character value.
                 Character value.
title_name
```

Value

```
ggplot2::ggplot2 object.
```

Author(s)

plot_score_genes

plot_score_genes

plot_score_genes

Description

```
plot_score_genes
```

Usage

```
plot_score_genes(
   markers_to_plot,
   label_1,
   label_2,
   norm_vitro,
   norm_vivo,
   cluster_vitro,
   cluster_viec,
   final_name,
   max_size = 9,
   text_size = 9.5,
   title_name
)
```

Arguments

markers_to_plot

Character vector with the names of the genes to plot.

label_1Character value. Label for the in vitro datasetlabel_2Character value. Label for the in vivo dataset

norm_vitro Norm count matrix (n_genes X n_cells) for in vitro dataset norm_vivo Norm count matrix (n_genes X n_cells) for in vivo dataset

cluster_vitro cluster for in vitro dataset cluster_vivo cluster for in vivo dataset

final_name Character vector with the names of the genes to show in the plot.

max_size Numeric value, specifying the size of the dot.

text_size Numeric value, specifying the size of the text in the plot.

title_name Character value.

Value

ggplot2::ggplot2 object showing balloon plot.

Author(s)

SCOPRO 5

SCOPRO SCOPRO

Description

The mean expression profile of *marker_stages_filter* genes is computed for each cluster in the in vivo and in vitro dataset. For a given cluster, a connectivity matrix is computed with number of rows and number of columns equal to the length of *marker_stages_filter*. Each entry (i,j) in the matrix can be 1 if the fold_change between gene i and gene j is above *fold_change*. Otherwise is 0. Finally the connectivity matrix of a given *name_vivo* stage and all the clusters in the in vitro dataset are compared. A gene i is considered to be conserved between *name_vivo* and an in vitro cluster if the jaccard index of the links of gene i is above *threshold*.

Usage

```
SCOPRO(
  norm_vitro,
  norm_vivo,
  cluster_vitro,
  cluster_vivo,
  name_vivo,
  marker_stages_filter,
  threshold = 0.1,
  number_link = 1,
  fold_change = 3,
  threshold_fold_change = 0.1,
  marker_stages,
  selected_stages
)
```

Arguments

norm_vitro	Norm count matrix (n_genes X n_cells) for in vitro dataset						
norm_vivo	Norm count matrix (n_genes X n_cells) for in vivo dataset						
cluster_vitro	cluster for in vitro dataset						
cluster_vivo	cluster for in vivo dataset						
name_vivo	name of the in vivo stage on which SCOPRO is run						
marker_stages_filter							
	output from the function filter_in_vitro						
threshold	Numeric value. For a given gene, the jaccard index between the links from the in vivo and in vitro datasets is computed. If the jaccard index is above <i>threshold</i> , then the gene is considered to be conserved between the two datasets.						
number_link	Numeric value. For a given gene in the in vivo dataset with links above <i>num-ber_link</i> , the jaccard index between the links from in vitro and in vivo dataset is computed.						

6 SCOPRO

fold_change Numeric value. For a given gene, the fold change between all the other genes is computed. If fold change is above *fold_change*, then there is a link with weight

1 between the two genes.

threshold_fold_change

Numeric value. Above *threshold* the fold change between genes is computed. Below *threshold* the difference between genes is computed.

marker_stages Second element of the list given as output by the function *select_top_markers*

selected_stages

In vivo stages for which the markers where computed with the function *select_top_markers*

Value

A list with five elements:

common_link Vector with the names of the genes conserved between *name_vivo* and all the clusters in the vitro dataset

no_common_link Vector with the names of the genes not conserved between name_vivo and the

clusters in the vitro dataset

link_kept List with the names of the genes conserved between *name_vivo* and each single

cluster in the vitro dataset

link_no_kept List with the names of the genes not conserved between name_vivo and each

single cluster in the vitro dataset

final_score Numeric value, given by the fraction of conserved markers of *name vivo* and

each single cluster in the in vitro dataset

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

Examples

```
load(system.file("extdata", "norm_es_vitro_small.Rda", package = "SCOPRO"))
n_es= norm_es_vitro_small
load(system.file("extdata", "norm_vivo_small.Rda", package = "SCOPRO"))
n_v = norm_vivo_small
load(system.file("extdata", "cluster_es_vitro_small.Rda", package = "SCOPRO"))
c_es=cluster_es_vitro_small
load(system.file("extdata", "cluster_vivo_small.Rda", package = "SCOPRO"))
c_v=cluster_vivo_small
load(system.file("extdata", "marker_stages_filter.Rda", package = "SCOPRO"))
m_s_f = marker_stages_filter
load(system.file("extdata", "marker_stages.Rda", package = "SCOPRO"))
m_s = marker_stages
stages = c("Late_2_cell", "epiblast_4.5", "epiblast_5.5", "epiblast_6.5")
output_SCOPRO = SCOPRO(n_es,n_v,c_es,c_v,"Late_2_cell",m_s_f,0.1,1,3,0.1,m_s,stages)
plot_score(output_SCOPRO,m_s,m_s_f,stages,"Late_2_cell","Score", "Cluster","2-cells")
```

select_common_genes 7

select_common_genes

select_common_genes

Description

```
select_common_genes
```

Usage

```
select_common_genes(
   SCOPRO_output,
   marker_stages,
   selected_stages,
   name_vivo,
   cluster_vitro,
   name_vitro
)
```

Arguments

SCOPRO_output output given by function SCOPRO

marker_stages Second element of the list given as output by the function <code>select_top_markers</code>

selected_stages

In vivo stages for which the markers where computed with the function se-

lect_top_markers

name_vivo name of the in vivo stage on which SCOPRO is run

cluster_vitro cluster for in vitro dataset

name_vitro name of the in vitro stage for which we want to know the conserved markers

with the *name_vivo* stage

Value

Character vector with the names of the conserved markers of *name_vivo* stage in the *name_vitro* stage

Author(s)

Description

```
select_no_common_genes
```

Usage

```
select_no_common_genes(
   SCOPRO_output,
   marker_stages,
   selected_stages,
   name_vivo,
   cluster_vitro,
   name_vitro
)
```

Arguments

SCOPRO_output output given by function SCOPRO

marker_stages Second element of the list given as output by the function *select_top_markers*

selected_stages

In vivo stages for which the markers where computed with the function se-

lect_top_markers

name_vivo name of the in vivo stage on which SCOPRO is run

cluster_vitro cluster for in vitro dataset

name_vitro name of the in vitro stage for which we want to know the non-conserved markers

with the *name_vivo* stage

Value

Character vector with the names of the non-conserved markers of *name_vivo* stage in the *name_vitro* stage

Author(s)

9 select_top_markers

select_top_markers select_top_markers

Description

For each stage in selected_stages, starting from the markers given by markers_cluster_seurat function of the package CIARA, only the markers with a median above threshold in the stage and below threshold in all the other stages are kept.

Usage

```
select_top_markers(
  selected_stages,
  cluster_vivo,
  norm_vivo,
 markers_small,
 max_number = 100,
  threshold = 0.1
)
```

Arguments

selected_stages

Character vector with the name of the selected in vivo stages

cluster_vivo cluster for in vivo dataset

Norm count matrix (n_genes X n_cells) for in vivo dataset norm_vivo

markers_small Output given by the function markers_cluster_seurat of the package CIARA Numeric value. Maximum number of top markers to consider for each stage in max_number

selected_stages

Numeric value. threshold

Value

A list with two elements:

marker_all Vector with the union of all the top_number markers for each stage in selected_stages marker_stages List with length equal to number of stages in selected_stages . Each element contains the top_number markers for a given stage in selected_stages

Author(s)

Gabriele Lubatti <gabriele.lubatti@helmholtz-muenchen.de>

See Also

https://CRAN.R-project.org/package=CIARA

Index

```
filter_in_vitro, 2
plot_score, 3
plot_score_genes, 4

SCOPRO, 5
select_common_genes, 7
select_no_common_genes, 8
select_top_markers, 9
```